
©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Professional Development for In-Service Teachers, pages 121–139
Copyright © 2022 by Information Age Publishing
www.infoagepub.com
All rights of reproduction in any form reserved.� 121

CHAPTER 5

LOOMING CODE
A Model, Learning Activity, and

Professional Development Approach
for Computer Science Educators

Heidee Vincent
Utah State University

Victor R. Lee
Utah State University

Aubrey Rogowski
Utah State University

Mimi Recker
Utah State University

ABSTRACT

As school librarians are asked to take on more responsibilities outside of their
regular duties, teaching coding is one such responsibility that falls outside
their area of expertise. In response to these challenges faced by school librar-

AU: To indicate corrections to these proofs, please use latest Adobe Acrobat Use the Com-
menting tool, which can be accessed on the current version by right clicking on the PDF and
selecting Add Sticky Note. Position the Sticky Note where you want the correction made and
insert revision text inside the Sticky Note. Text you wish to revise can also be highlighted by
selecting the text, right clicking, and selecting Highlight Text. The Strikethrough Text option
can be used indicated text to delete. Please DO NOT directly edit or copy and paste correc-
tions to the PDF. Doing so will adversely affect formatting and mangle the text. Failure to
comply to these requirements will result in corrected proofs not being accepted and returned
to the author.

DO NOT EDIT ON DROPBOX. You must supply standalone files for each chapter

heideevincent
Sticky Note
No affiliation, not at a university anymore.

heideevincent
Sticky Note
Stanford University

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

122  ⏹  H. VINCENT et al.

ians, this chapter proposes a model for designing computer science activities
and instruction called Expansively-framed Unplugged. The chapter describes
this model (also known as EfU) and demonstrates how it can be used to de-
sign activities such as Looming Code, a coding activity where students use
Scratch to model existing patterns in a weaving as well as create new ones.
This chapter describes the experience of an elementary school librarian as
she attended professional development sessions to learn the activity and im-
plemented it in two of her elementary school classes.

As providing equitable access to computer science (CS) education be-
comes a greater priority for many school districts throughout the United
States, administrators are struggling to find additional time for scheduling
learning in an already-packed school day. Because of this lack of available
instructional minutes in the school day, many school librarians at the el-
ementary and middle school levels are increasingly being asked to take on
CS education responsibilities in their libraries, often in spite of their lack
of training and familiarity with the subject (Martin, 2017). While school
districts may sponsor professional development (PD) sessions and provide
curricula, these districts are looking to librarians to teach computer coding
when they have never been a student of this topic. In addition, due to bud-
get constraints, many elementary school librarians begin working as part-
time aids and are later hired as full-time librarians without ever completing
a degree or certification as a school librarian or teacher. All together, these
are challenging conditions for librarians to overcome in offering quality CS
instruction in addition to performing their regular duties.

In this chapter, we describe a model, instructional activity, and PD ap-
proach to help school librarians or other educators with limited coding
background to learn to lead coding activities in their libraries. The activi-
ties are comprised of both coding as well as “unplugged” computing activi-
ties—ones that do not require a digital computer (e.g., Bell et al., 2009). As
librarians typically lack specific coding knowledge, the professional devel-
opment takes a teachers-as-learners approach in which librarians are first
involved as participants in the instructional activity. In this way, they first
draw upon their knowledge of a familiar domain, the unplugged activity,
and learn how this applies and transfers to coding concepts.

Our work begins with an observation that many of the librarians we have
worked with engage in crafting as a hobby and are familiar with several
different crafting media, such as paper, fabric, and paint (Lee & Vincent,
2019). Even if some librarians do not identify themselves as having a partic-
ular talent for crafting, we propose that physical crafting materials provide
a concrete and tangible medium in which to explore coding concepts, and
familiar media such as paper, markers, and yarn offer a low threshold to
those who may be wary of learning computer programming. These aspects
form the unplugged portion of our model and instructional activity.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  123

The theoretical model underlying our approach draws upon a situ-
ated account of transfer, called expansive framing (Engle et al., 2012).
This model suggests that students need extra support to fully expand the
use context for new knowledge from the learning context to the transfer
context, and that instructors can make that transition smoother by mak-
ing multiple and frequent connections back and forth between the social
context at learning and the social context at transfer. Expansive framing
informed the design of the instructional activities to produce learning envi-
ronments where coding is framed in real-world and authentic contexts, so
that students more easily learn and retain new skills and educators (here,
the librarians) are able to draw on and transfer their existing knowledge
from a different yet familiar domain. Although coding connects to numer-
ous fields and domains, the goal is for educators to make those connections
explicit and frequent to both help their own learning as well as counter the
risk of teaching content that their students see as only usable or applicable
in one particular context.

By combining expansive framing and the unplugged approach, we pro-
pose an instructional model for introductory CS education called Expan-
sively-framed Unplugged (EfU) (Lee & Vincent, 2019). It begins with a
tangible unplugged activity, moves to paper and pencil and then digital
representations of the activity (using a block-based coding language like
Scratch, e.g.), and culminates in using the digital model to produce a new
version of the original unplugged activity. This model informed an instan-
tiation of an instructional activity, called Looming Code (see Table 5.1).

In the next sections, we first describe the theoretical motivation for our
approach, its instantiation in Looming Code, and our approach to PD. We
then describe one school librarian’s experiences as she participated in our
PD structured around EfU. The PD consisted of her participating in the
Looming Code activities first as a student to draw upon her crafting knowl-
edge to better understand and feel more comfortable with the specific
coding activities. The librarian then implemented Looming Code with two
classes of elementary school students in her school library.

BACKGROUND

Our EfU model combines ideas from both unplugged computing and
the situated model of transfer, called expansive framing. Unplugged CS
is a practice for teaching CS concepts and principles without a computer
(e.g., Bell et al., 2009). These kinds of unplugged activities have been dem-
onstrated in several domains, including beading (Eisenberg, 2010) and
playing tabletop board games (Berland & Lee, 2011).

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

124  ⏹  H. VINCENT et al.

One of the main ideas of unplugged computing is to teach learners CS
skills and concepts outside of the realm of a specific programming language.
Students who shy away from actual computer coding may enjoy using those
same skills and strategies in a different context, and the same skills used in
coding, such as debugging and composition, can be learned and practiced
in other types of tasks and contexts. This approach is similar to other long
standing cognitive approaches for supporting transfer of learning through
the use of analogies (Gentner, 1998) or metaphors (Videla, 2017).

For those who do enjoy actual coding, unplugged activities give them
a way to practice concepts and strategies outside of a single programming
language and to recognize contexts outside of the computer in which those
skills could be useful. Another argument in favor of unplugged computing
is that it provides a more tangible way for learning abstract CS concepts
(Eisenberg et al., 2009; Kafai & Vasudevan, 2015). Students who may have
a hard time understanding an abstract sorting algorithm, for example, may
benefit from hands-on activities in which they sort items with paper, cards,
or other tangible materials.

Unplugged activities are also appealing to teachers because, as they do
not require 1–1 computing, they usually have a lower cost. However, teachers
who implement unplugged activities exclusively run the risk of the learners’
knowledge remaining situated in the medium of a specific unplugged task.
Transfer of knowledge is problematic for instructors of all subject areas, as
the learning context (environment in which the knowledge is learned) and
transfer context (environment in which the knowledge will be needed) are
not always similar (Bransford et al., 2000). If learners successfully practice a
CS concept, such as algorithm building in a board game, they still may not
be able to transfer that practice to an actual coding interface.

To address this problem, we turn to the model of expansive framing that
is designed to create a more favorable environment for knowledge transfer
(Engle et al., 2012). This model has been used by others to design more
broadly appealing computational thinking curriculum and assessments
(Grover et al., 2014).

This model posits that by making several, frequent connections back and
forth between the social context of learning and the social context of trans-
fer, teachers can help learners create an encompassing context that aids in
knowledge transfer (see Figure 5.1 adapted from Engle et al., 2012). Thus,
if students are able to understand the larger context into which the learn-
ing context and the transfer context fall, it will be easier for them to retain
and use their knowledge in that transfer context.

Engle et al. (2012) identify five specific types of ways in which expansive
framing connections can be made to create and strengthen that encom-
passing context. The first two involve connecting settings. First, if students
understand how the skills learned will be useful for them in a future setting,

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  125

they may learn and remember them better. Second is a focus on connecting
settings in order to access prior knowledge. Besides encouraging students
to look forward to future settings, this type of connection encourages stu-
dents to look backwards and see how prior experience and learning may
be applied to the current situation. This helps students link their current
knowledge to prior knowledge, reducing the risk that current knowledge
will become inert or obsolete (Bransford et al., 2000).

The next three connections involve authorship. The third type of con-
nection suggested is that authorship leads to connecting prior knowledge
in ways that support later transfer-out. This is similar to the second type
in that teachers are encouraging students to use prior knowledge but em-
phasizes that authorship itself encourages students to do so. Engle et al.
(2012) explain that students in these types of learning settings “sometimes
brought in their own outside examples to form generalizations about the
topics they were learning,” and that “data showed that these students were
also more likely to transfer certain facts, principles, and a learning strategy
to a new context” (p. 224).

Forward & Backward
Links Made Between

Contexts

With Enough Links,
Creation of

Encompassing
Context

Social
Context at Learning

Content

Social
Context at Transfer

Content

Social
Context at Learning

Content

Social
Context at Transfer

Content

Figure 5.1  Expansive framing model. Source: Adapted from Engle et al., 2012.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

126  ⏹  H. VINCENT et al.

Fourth, authorship promotes accountability to particular content. If a
student completes a creative project for some content, as opposed to pas-
sively learning about that same content, the very nature of the task encour-
ages students to master the content in order to create. Finally, the fifth type
of connection is that authorship as a practice promotes generation and
adaptation of knowledge in transfer contexts. Instead of attempting to fill
students’ heads with knowledge, offering them a chance at authorship en-
courages them to be more than just consumers of knowledge and to strive
to add something to the collective body of knowledge.

Eglash and Bennet (2009), for example, use the context of cornrows as a
hairstyle and students’ cultural capital in that area to stimulate connections
to mathematics and coding. In their Cornrow Curves activity, students learn
about the history of cornrows and use a computer program to create their
own design. While many such connections between unplugged tasks and
other non-digital contexts are desirable for transfer, we also want students to
be able to use skills learned in unplugged tasks in an actual coding environ-
ment. In order to lessen the risk of students’ knowledge remaining situated
in unplugged tasks, our EfU model starts with unplugged activities and then
encourages expansive framing to connect those tasks to actual coding tasks.

The EfU model consists of three domains and three movements across
domains (see Figure 5.2). The three domains are physical artifact, paper
and pencil, and digital. The first movement across domains is the move-
ment from physical artifact to paper and pencil, where the learner creates a
paper and pencil representation of the physical artifact. The second is from
paper and pencil to digital, where learners use their paper and pencil rep-
resentation to inform their code and create a digital model of the physical
artifact. Last is the movement from digital back to physical, where learners
use customized code to create their own physical artifact. Specific instantia-
tions of the EfU model may contain steps where learners move deeper into
a single domain, called submovements.

The three domains are informed by unplugged ideas. Learners and
teachers who may be intimidated by starting in a digital format are eased
into the process by starting with the physical artifact, then moving to paper,
and finally coding digitally. Paper and pencil are also more accessible than
the other two domains; it is often easier for a novice to fix a mistake on pa-
per than it is to undo it in a physical product or in code.

The three movements are informed by the expansive framing model and
serve to make connections back and forth between domains. Although stu-
dents can learn to make physical artifacts or code independently of each
other, the goal is for students to achieve transfer of knowledge so that their
learning does not stay accessible only in the context in which it was gained.
The five aspects of expansive framing mentioned earlier can be seen in
different parts of the EfU model, as seen in Columns 1 and 5 of Table 5.1

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  127

in the following section. The movements from physical artifact to paper
and pencil to digital offer connections of different settings for both future
transfer and access to prior knowledge. Students who have done the par-
ticular unplugged activity or a similar one have prior knowledge they can
draw on, and students who feel the knowledge presented might be useful
in future contexts may achieve better transfer. The movement from digital
back to physical artifact uses authorship of a new artifact to support later
transfer out, promote accountability to particular content, and promote
the generation and adaptation of knowledge.

Although the ideas behind expansive framing are focused on a situated
view of student learning and transfer, they also apply to educators with little
coding background. It is important to note that, unlike the other topics they
may teach, they too are learners in this content area, and every aspect of EfU
designed to help students learn may benefit them as well. Work by Putnam
and Borko (2000) has shown that using a teacher-as-learners model for PD
helps improve teacher learning. Thus, we propose that teachers prepare to
teach and lead the activity by participating in it as their students will. Using
unplugged ideas to inform the medium and tasks and using expansive fram-
ing to inform the interactions and conversations, will lead to an activity with a
low threshold for both teachers and learners, and will help teachers with little
coding background to successfully lead and support such activities.

TABLE 5.1  Levels in Looming Code and Connections to EfU

Looming
Code Level &
Description

CS Concepts
and Skills

EfU Model
Movement

EfU Model
Sub-

Movement

Expansive
Framing

Connection

1 � color grid based
on physical
weaving

Decomposition Physical artifact
to paper-and-

pencil

FT, PK

2 � make box
pattern

Abstraction
Loops

Paper-and-
pencil

FT, PK

3 � basic code in
Scratch

Algorithms
Abstraction

Paper-and-
pencil to

digital

FT, PK

4 � shorter code in
Scratch

Efficiency Digital FT, PK

5 � customize design
in Scratch

Debugging,
Iteration

Digital APK, APA, APG

6 � create weaving
from new design

Enacting code Digital to
physical artifact

APK, APA, APG

Key: FT—connecting settings for future transfer; PK—connecting settings to access prior
knowledge; APK—authorship leads to connecting of prior knowledge in ways that support
later transfer-out; APA—authorship promotes accountability to particular content; APG—
authorship to promote generation and adaptation of knowledge.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

128  ⏹  H. VINCENT et al.

Having teachers approach the content from the learners’ perspective not
only helps them become familiar with the content, but also gives them op-
portunities to experience firsthand the areas where students will struggle,
which will help them as they lead the program themselves. This teacher-as-
learner PD model has been shown to help improve teacher learning as well
as shift their beliefs about teaching and learning to one more grounded in
student thinking (Putnam & Borko, 2000).

EXEMPLARS

Looming Code in the Context of EfU

Looming Code consists of several levels in which learners examine ex-
ample weavings, color the design on a grid, create a readable pattern of the
design, code that pattern in Scratch, design a custom weaving in Scratch,
and then make the design with physical materials. Table 5.1 summarizes each
level and links each level to relevant CS concepts. We developed a set of Level
Cards, which break down the steps of each level and offer tips and reminders,
along with the student worksheet and the Scratch program used.

Level 1
In Level 1, learners are given a weaving, such as the one in Figure 5.2,

and asked to examine the pattern and transfer it to a paper grid. This helps
learners practice decomposition, as they move from looking at the weaving
as a whole to looking at the individual parts and how they fit together. The
facilitator can ask learners to think about other areas of their lives where
they have to take a task or problem and divide it into smaller parts, and
connect this level to coding skills by talking about decomposition explicitly.

Level 2
Once they move to Level 2, the learners make a box pattern from their

grid pattern, as shown in Figure 5.3. With a completed and colored grid
of the design, learners can start decomposing it further. When weaving,
designs are made by using different combinations of up and down for the
vertical strings, called the warp. These strings are either up or down, form-
ing a sort of binary system in which infinite designs can be created. Learn-
ers will start with the first line of the weaving and create a box pattern for
that line. This is essentially a row of boxes, with each box shifted either up
or down to represent the position of a particular string. Learners will create
a box pattern row for each unique row of their pattern. After creating the
individual rows, learners will write the sequence of rows, for example, 1 2
3 4 3 2 1. This creates a readable pattern from which the design could be

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  129

Figure 5.2  Example weaving given to students to decode.

Figure 5.3  Example looming code student worksheet, levels 1 and 2.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

130  ⏹  H. VINCENT et al.

recreated. This encourages learners to look for repeating patterns in and
within rows. Some weaving designs will have a 1 2 1 2 1 2 sequence, while
others include 1 2 3 4 1 2 3 4 and 1 2 3 4 3 2 1. In the classroom or library,
the teacher can talk with students about abstraction as well as repeat loops.

The facilitator can also start a conversation about notation. The librar-
ian who participated in our PD sessions stated that her students had just
finished a unit in poetry, where they learned to notate poem lines by their
ending rhymes, using letters to represent unique rows. Like the weaving
designs, poems can have many different rhyming sequences, such as A B A
B, A B A C, and others. Thus, the instructor can explain to students that it
does not really matter whether they use numbers or letters or even shapes
to create written notations of patterns, but it is important that they are con-
sistent with their notation and that they make the notation clear to others
who might want to understand or recreate the design and pattern.

At this point, learners can also discuss how the grid pattern from Level
1 and the box pattern from Level 2 are similar and different, and whether
both are useful or necessary. Both patterns contain an accurate and complete
representation of the weaving design. They both show which colored strings
are visible in different parts of the weaving, but the grid pattern shows a com-
plete visual depiction of the design as completed, whereas the box pattern
is a deconstructed version. The grid pattern could be used when creating a
new design to visualize the result, or to show someone else what a particular
design will look like. The box pattern is more for someone who is making the
design. When weaving, using a complete visual of the design requires weavers
to keep track of the row they are on, as well as count boxes in a small colored
grid, which could easily lead to errors. Using a more deconstructed represen-
tation, such as the box pattern allows them to see one row at a time as well as
how to move their warp strings to make each row.

Level 3
In Level 3, learners are coding their pattern in Scratch. Using their box

pattern and a skeleton program in Scratch, learners code each unique row
with Up or Down blocks that map to the position of the boxes in their
box pattern rows. Once the learners code their rows, they then move to
code the sequence of rows for their design. Learners have this already writ-
ten in their box pattern, so they simply need to transfer that to a row of
code with the same numbers. Once they are finished coding, learners can
run their code to create a visual representation of the design. The skeleton
program has code in the background that creates a colored grid based on
the sequence of Up and Down blocks in each row and the sequence of
rows. Learners can change the colors of the boxes to match the design
they are using. Ideally, the colored grid in Scratch should match their grid
pattern on paper exactly. Of course, errors can be made in the process of

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  131

transferring the design to a paper grid, then to a box pattern, and then to
Scratch, but the visual model in Scratch allows students to compare their
digital and physical designs to check for accuracy. If errors appear, the fa-
cilitator can talk to the learners about debugging, and how important it is
to be able to identify whether or not there is an error, how to find it, and
how to fix it. The facilitator can help learners debug or ask individual learn-
ers to help each other.

Level 4
Once learners debug their patterns and code and the visual model pre-

sented in Scratch is acceptable, they start looking for repeating patterns
inside their code of the individual rows and sequence of rows. This consti-
tutes Level 4. At this point, the facilitator can ask the learners to make their
code as efficient as possible without changing the design. Code such as “Up
Up Up” can be rewritten with a repeat block, using only two blocks instead
of three. The result of this level depends on both the pattern a learner is
using and how they decide to use the repeat blocks in their code.

Level 5
After the learners work through the first few levels with the given weav-

ing design, they have the opportunity to create their own design in Level 5.
Learners can modify their existing code or wipe everything and start afresh.
If learners are having a hard time thinking of what to do for a new design,
they can always keep the rows they have already coded and simply rearrange
them into a new design.

Level 6
Once learners finish creating their design in Scratch, they begin Level 6

and read the pattern in their code to create their design with pipe cleaners.
Instead of using real looms and yarn to weave, we use pipe cleaners and large
combs. Real looms are either expensive to purchase for a whole class or dif-
ficult for younger children to operate, and we discovered that wide-toothed
combs hold the pipe cleaners just enough to give students a sturdy base on
which to start their weaving. Using pipe cleaners allows students more room
for creativity, as it is cheaper to provide a wide variety of colors in pipe clean-
ers than it is in yarn. Students can also change the colors in the weft or the
warp very easily with the pipe cleaners. Weaving with pipe cleaners is less time
consuming than weaving with yarn, since it is not necessary to have a very
tight weave and frustrating tangles are much less likely. At the end of Level 6,
students complete the Looming Code sequence. If time permits, the facilita-
tor can provide students an opportunity to try others’ designs and create pat-
terns that will stay in the library (or classroom) for future use.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

132  ⏹  H. VINCENT et al.

As students move through the levels of the Looming Code activity, they
also progress through the domains of the EfU model and make more and
more connections between contexts. Table 5.1 lists each level of Looming
Code with its associated movement or submovement. Table 5.1 shows how
Looming Code involves the five types of connections suggested by the ex-
pansive framing model to promote transfer. The first four levels (Levels
1–4) focus on connecting settings for both access to prior knowledge and
future transfer. The type of tasks students will be doing, such as taking apart
a bigger problem into smaller pieces and writing and reading step-by-step
instructions, can be applied to many situations and may be tailored to stu-
dent interest and experience at the discretion of the teacher.

The last two Levels of Looming Code (Levels 5 & 6) focus on author-
ship. According to the expansive framing model, allowing students to use
their creativity to take what they learned in the first half and create a new
design will draw on prior knowledge, promote accountability to what they
are learning, and give them a sense of having generated and adapted knowl-
edge rather than passively consuming information.

As mentioned earlier, the three domains of the EfU model are informed
by unplugged ideas, and the three movements are informed by expansive
framing (see Figure 5.4). Some students and teachers have prior experi-
ence with Scratch or other block-based coding platforms, but many have
none. If learners not familiar with Scratch start on the computer right away,
trying to code a pattern as they decipher it, they would be learning new con-
tent and a new interface simultaneously. In order to reduce this cognitive

Start-
example
weaving

Custom weaving

New box
pattern

Grid pattern
box pattern

Artifact
Paper-and-

Pencil

Scratch-long
and short code
customization

Physical Digital

Figure 5.4  Domains and movements within EfU model with associated looming
code levels.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  133

load, learners use both physical artifacts and paper and pencil work to be-
come familiar with the content—the weaving design—before being intro-
duced to a new interface—Scratch. By the time learners finish their paper
and pencil representations of the pattern, they are simply re-instantiating
the pattern in Scratch.

Professional Development: Teacher as Learner

In addition to developing Looming Code as an instantiation of the
EfU model to help both student and teacher learning, we also designed
accompanying PD, using a teacher-as-learner approach. Instead of simply
presenting the program materials to the librarians and talking through the
program, we set up a space with all the materials needed for librarians to
participate in Looming Code just like students.

This served three purposes. First, the librarian, who would later be the
instructor for the program, was able to learn new and unfamiliar content she
would later be required to teach. This is unlike most PD approaches where
teachers are assumed to have the necessary background knowledge. Second,
she had the opportunity to sit in the students’ place and see the program
from the learner point of view. This helps her recognize places where stu-
dents will struggle and prepare for questions and scaffolding opportunities.
Finally, she gets to see the instruction modeled as we teach the program. All
three purposes help prepare the librarian to successfully implement the pro-
gram with students and create successful learning environments.

METHODS/DATA COLLECTION

As part of a larger design-based research study in the Rocky Mountain re-
gion of the United States, one public school media and technology teacher,
Rachel (a pseudonym), participated. Rachel had her elementary education
teaching license, a master’s degree in gifted education, and an administra-
tive endorsement. This was Rachel’s first year as the media and technology
teacher, but she had several years of teaching experience. At the time of
data collection, she was teaching Grade K–5 media and technology courses
in the library, working with students for 90 minutes each week. Rachel was
responsible for teaching both the library media and computer classes for
all students in the school.

Rachel and her fifth grade students were participants in early iterations
of our PD and Looming Code program. Her participation and feedback
during PD sessions helped to inform our subsequent iterations and imple-
mentations of the program. Prior to participation in our Looming Code

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

134  ⏹  H. VINCENT et al.

program, Rachel had been teaching her fifth grade students Scratch so they
were familiar with the basics of the Scratch interface prior to beginning this
project. In addition, Rachel had pursued looming as a personal hobby and
was familiar with weaving techniques and patterns.

Rachel attended two PD sessions, taught by our team, each lasting around
1 hour, in which she participated in the program as a learner, with the un-
derstanding that she, in turn, would implement the program with two fifth
grade classes in the library during their media and technology class time. In
addition to the PD sessions, she was provided with the necessary program
materials and supplies.

Rachel implemented the Looming Code activity with two of her classes,
and each class spent two class periods on the activity. Each class period was
ninety minutes, however both classes experienced some interruptions that
prevented them from using the entirety of their time on the activity. There
were 30 students total between the two classes who participated in the activ-
ity. We observed the activity and only directly interacted with them when
Rachel asked us for clarification on something she was doing. The data de-
scribed in the next section was collected in the PD sessions and classroom
implementations in the form of observational field notes and photographs.

RESULTS AND DISCUSSION

During our first PD session with Rachel, we gave her a copy of the level
cards, which included the instructions for each level and the worksheet and
had her participate in the program as a student. We asked questions and
pointed out things to watch for as she worked. After completing the first two
levels, Rachel suggested a small change to the format of the worksheet and
had several ideas on how she would teach this portion of the activity to her
students. While working in Scratch, she deleted some of the background
code needed to create the visual, but then realized her mistake. She was
able to successfully transfer her box pattern to Scratch to produce a digital
representation of the pattern. Then she customized the code to create her
own pattern and began weaving it on a loom. Due to time constraints, she
was not able to finish her weaving. During the second session, we gave her
all the materials and resources she would need to teach the program and
reviewed the program flow. She felt comfortable with the material and was
excited to start the program with two of her fifth grade classes.

Throughout Rachel’s implementation of the Looming Code program
in her library and computer lab, she engaged in various activities we con-
sidered to be good teaching practice, or habits developed by teachers with
her level of experience. She managed the behavior and focus of her classes
well, asked probing questions to check for understanding, and was able to

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  135

provide support and scaffolding for individual students or the whole class
when help was needed. Besides Rachel’s scattered comments on how she
would teach certain sections of the program, none of these pedagogical
behaviors were discussed in the PD sessions. We found that once Rachel was
comfortable with the content of the program, she used knowledge of teach-
ing and facilitating to adjust and augment the program to fit the needs of
her students and space.

To begin the program, Rachel gave the students an overview of all the
levels, and then started on a three-column chart, labeled, “Something I
wonder about,” “Something I learned,” and “How I felt about the activity.”
She had the students share thoughts for the first column. While sharing
thoughts about the “Something I wonder about” section of the chart, one
student asked why they were doing this activity. Rachel responded by say-
ing, “That’s a good question. What does life have to do with code?” She let
the students think about that for a moment, and then asked if there are
no rules that we have to follow in life. One student pointed out that we
should follow the rules but do not have to, and Rachel said that just like life
has certain rules, so does code. She then asked, “What does code have to
do with life?” The students thought, and she asked them if they have ever
played a computer or video game and said that is a good example of code.
She also pointed out that the fact that their parents’ eye and hair color
determine their eye and hair color is actually a form of code, genetic code.
The students thought that was neat. One student shared that he wondered
how they will be able to fix their work if they mess up, Rachel asked, “Even
if it doesn’t turn out exactly the way we wanted, is that really a failure?” and
pointed out that some of the best learning experiences come from failures.

During levels one and two, Rachel passed two example weavings around
the class for the students to hold and examine. When they were coloring
their grids, she passed around boxes of crayons that included only the col-
ors of crayons they needed to match the example weavings. Before moving
to Level 3, Rachel moved all the students to the computer lab. She pulled
up the Scratch project on the projector and showed the students the code
(see Figure 5.5).

She pointed out that all the blocks currently on the screen need to stay
where they are and they should not delete any of them, something she had
done the first time she used the project. Rachel also modeled for the stu-
dents how to code their rows and run their program, and asked questions
to check their understanding. While modeling code, she purposely coded
something incorrectly, ran the program, and asked her students why it did
not work. The students were able to spot the bug in the code and fix it with
Rachel’s help.

As the students worked on their code, Rachel walked around, monitor-
ing their behavior and looking for opportunities to provide support to

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

136  ⏹  H. VINCENT et al.

struggling students. While walking around, she was able to clarify miscon-
ceptions the students had, such as one student who believed the pattern
could not be bigger than a certain length. Near the end of class, students
chatted about the possibilities of coding in Scratch. Rachel mentioned that
they could do some geometry work in Scratch, since they were learning
about geometry in another class, and asked the students if they thought
they could code a rhombus or other geometrical shape.

As the class progressed to later levels of the program, Rachel used print-
outs of the level cards taped to the whiteboard to help students see what
they had done so far and what they would be doing next. She modeled how
to set up the comb with the pipe cleaners and how to start and complete the
weaving. For the rest of the time, there were students at different stages of
progress. Some were coding the example pattern, some were coding their
own pattern, and some were weaving their own pattern. As Rachel circled
the room and talked to individual students, she was able to answer their
questions no matter what step they were on. Near the end of class, she no-
ticed an incorrect practice that had started spreading across the room and
called everyone’s attention to the front so that she could point it out and
correct it. After explaining the correct method, she helped students who
had made that error to fix their weaving.

After completing the program, we conducted a 20 minute, recorded,
semi-structured interview with Rachel to find out how she felt the program
had gone. We asked ten questions regarding the implementation of the

Figure 5.5  Skeleton code students used to build their patterns in scratch.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  137

program and use of the resources and materials. She said that the biggest
takeaway for the students had been that they could use Scratch to make
something real, and that the biggest takeaway for herself was to make sure
she could do each part of the program herself before she taught it. She had
shared with us when we first started working with her that she was familiar
with weaving, but during the interview explained that she had never fol-
lowed any specific patterns and had done what she called free looming. She
told us that the Looming Code program really got her thinking about the
intentionality of executing a specific pattern in a design.

Rachel also shared with us that she appreciated having both the learn-
er’s and the teacher’s perspective of the program, and that it helped her
see where her students would need help. She knew how she would further
tweak and improve the activity if she did it again, and said that overall, she
really enjoyed it. Seeing the kids sitting on the floor weaving and chatting
makes her think of a quilting bee (a social activity where people gather to
make quilts).

Overall, our observations show that the EfU model, Looming Code pro-
gram, and teacher as learner PD approach helped Rachel gain enough
content knowledge in a new activity to be able to adapt it to her particular
students and use her good teaching practices to create a fun, successful
learning environment.

NEXT STEPS

This chapter described a conceptual model, instructional activity, and PD
approach designed to prepare school librarians or other educators with
limited coding background to learn to lead coding activities and lessons in
their libraries. The conceptual model, EfU, is based on a situated account
of transfer, in which backward and forward connections between known
unplugged contexts and new coding contexts are made salient and author-
ship is emphasized. EfU informed the design on an instructional activity,
Looming Code, which links weaving, as its familiar and unplugged context,
to the new context, coding patterns in Scratch, and back to weaving again.
Similarly, the PD design is influenced by EfU and the teacher as learner ap-
proach, in that librarians first participate in Looming Code as students, and
draw upon their existing knowledge of crafting to help understand and feel
comfortable with the subsequent coding activities.

We note that while the example described in this chapter uses craft-
ing, specifically weaving, as its unplugged activity, the EfU model is not
limited in its scope of possible unplugged activities. In current work, we
are using EfU to inform an instructional unit that uses computationally-
rich board games as the familiar context. Students play these games, learn

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

138  ⏹  H. VINCENT et al.

computational thinking concepts, and then create their own board games
in a digital coding environment (Lee et al., 2020). In using the EfU con-
ceptual approach, a key goal is to identify familiar contexts for students as
well as teachers that serve as useful unplugged “funds of knowledge” (Moll
& Greenberg, 1990) to support learning in the digital environment. A key
assumption is that a well-chosen unplugged context may offer a means to
broadening participation in coding to students who may otherwise lack
interest. In order to avoid replicating patterns of participation in CS that
exclude certain groups of students, we seek contexts (e.g., weaving, board
games) that are both rich in computation and offer many trajectories for
more inclusive participation. We believe that many such fruitful contexts
still remain to be explored.

Future work should investigate to what extent this provides enough of a
bridge for teachers who are new to coding to support and scaffold coding
activities in their instructional context. This model is not proposed as a way
to create content experts in CS but rather to enable non-experts to feel
comfortable in hosting activities in which the students become engaged
and interested in coding. While this instantiation was implemented with
one educator, the model as well as the Looming Code program are cer-
tainly scalable. Similarly, future work should examine to what extent this
approach moves beyond simply sparking initial interest in students and en-
courages a growing level of involvement and persistence in CS.

ACKNOWLEDGMENTS

This work was supported by the Institute of Museum and Library Services
grant number RE-31-16-0013-16. We thank our partnering librarians, their
students, and the school district.

Resources for the Looming Code activity can be found at https://slli
.usu.edu/looming-code/

REFERENCES

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science un-
plugged: School students doing real computing without computers. The New
Zealand Journal of Applied Computing and Information Technology, 13(1), 20–29.

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for
distributed computational thinking. International Journal of Game-Based Learn-
ing, 1(2), 65–81.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn (Vol. 11).
National Academy Press.

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

©
 2

02
2

IA
P

All
rig

ht
s

re
se

rv
ed

Looming Code  ⏹  139

Eglash, R., & Bennett, A. (2009). Teaching with hidden capital: Agency in children’s
computational explorations of cornrow hairstyles. Children, Youth and Environ-
ments, 19(1), 58–73.

Eisenberg, M. (2010). Bead games, or, getting started in computational thinking
without a computer. International Journal of Computers for Mathematical Learn-
ing, 15(2), 161–166.

Eisenberg, M., Elumeze, N., MacFerrin, M., & Buechley, L. (2009, June). Children’s
programming, reconsidered: Settings, stuff, and surfaces [Conference ses-
sion]. In P. Paolini (Chair), The 8th International Conference on Interaction De-
sign and Children (pp. 1–8). ACM.

Engle, R. A., Lam, D. P., Meyer, X. S., & Nix, S. E. (2012). How does expansive fram-
ing promote transfer? Several proposed explanations and a research agenda
for investigating them. Educational Psychologist, 47(3), 215–231.

Gentner, D. (1998). Analogies. In W. Bechtel, G. Graham, & D. A. Balota (Eds.), A
companion to cognitive science (pp. 107–113). Blackwell.

Grover, S., Pea, R. D., & Cooper, S. (2014, June 23–27). Expansive framing and prep-
aration for future learning in middle-school computer science [Conference
session]. In J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, A.
S. Jurow, K. O’Connor, T. Lee, & Laura D’Amico (Eds.), 11th International
Conference of the Learning Sciences (pp. 992–996). International Society of the
Learning Sciences.

Kafai, Y., & Vasudevan, V. (2015, June 21–24). Hi-Lo tech games: Crafting, coding
and collaboration of augmented board games by high school youth [Confer-
ence session]. In M. Umaschi Bers & G. Revelle (Co-Chairs), The 14th Interna-
tional Conference on Interaction Design and Children (pp. 130–139). ACM.

Lee, V. R., & Vincent, H. (2019, March). An expansively-framed unplugged weaving
sequence to bear computation fruit of the loom [Conference session]. In P.
Blikstein & N. Holbert (Co-Charis), FabLearn Conference 2019 (pp. 124–127).
Association for Computing Machinery.

Lee, V. R., Poole, F., Clarke-Midura, J., Recker, M., & Rasmussen, M. (2020). Intro-
ducing coding through tabletop board games and their digital instantiations
across elementary classrooms and school libraries [Conference session]. In J.
Zhang & M. Sherriff (Co-Chairs), ACM Technical Symposium on Computer Science
Education (pp. 787–793). ACM. https://doi.org/10.1145/3328778.3366917

Moll, L. C., & Greenberg, J. B. (1990). Creating zones of possibilities: Combining
social contexts for instruction. In L. Moll (Eds.), Vygotsky and education: In-
structional implications and applications of sociohistorical psychology (pp. 319–348).
Cambridge University Press.

Martin, C. (2017). Libraries as facilitators of coding for all. Knowledge Quest, 45(3),
46–53.

Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have
to say about research on teacher learning? Educational Researcher, 29(1), 4–15.

Videla, A. (2017). Metaphors we compute by. Communications of the ACM, 60(10),
42–45.

